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On Informational Divergences for General
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We describe a way to transfer informational divergences into the nonclassical
regime, and state their basic properties. This should be seen as a first step toward
a nonclassical estimation theory. Our procedure mimics the approach of V. Cantoni
in defining a generalized transition probability and only needs a reasonable
concept of observables (POV measures).

Informational divergences, in classical statistics also called f-diver-

gences, are introduced in order to compare probability measuresÐ the states

of classical theory. In fact, these informational divergences measure the

amount of information contained in the states and they are therefore a general-

ization of the relative entropy, which is called in information theory also

relative information. The obtained variety of functionals contains the relative

entropy (relative information), the ReÂnyi entropies, and the Bures distance,

which is associated to the generalized transition probability introduced by

Cantoni (1975). The aim of the present paper is to transfer these functionals

into the quantum world. The plan of the paper is as follows. First, we refer

the definition of f-divergences of classical statistics, touch upon some of their

properties, and give the basic examples as they appear in statistics. Then we

switch to general statistical theories, where we introduce the basic concepts

and state some further properties of our f-divergences. Finally, we show how

statistical divergences are introduced in quantum probability and compare

the ansatz found there with our ideas. We omit the proofs and leave various

mathematical objects and notation unexplained; for the classical part we

therefore recommend Liese and Vajda, (1985) and Heyer (1982), for issues
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of quantum probability our basic reference is Ohya and Petz (1993); details

will be elaborated in a forthcoming publication (see also Zanzinger, 1995).

The basic ingredient for the definition of f-divergences is a convex
function2 f : R 1

0 ª R ø { ` } as a bias for the comparison. By means of the

auxiliary function

fÄ(u, v) : 5 5
0 if u 5 0 and v 5 0

u
f( ` )

`
if u Þ 0 and v 5 0

vf 1 uv 2 otherwise

(1)

we define the f-divergence between two positive measures m , n P }+(-, S )

(probability distributions) on a measurable space (-, S ):

f ( m | n ) 5 # x

fÄ 1 d m
d s

,
d n
d s 2 d s 5 # x

f 1 d m 1

d n 2 d n 1 m 2( x )
f ( ` )

`
(2)

where we decompose m 5 m 1 % m 2 by means of the Lebesgue decomposition

( m 1 , , n and m 2 ’ n ). Here s is an arbitrary positive measure to which m
and n are absolutely continuous.

Theorem 1 (Range of Values). Let f be strictly convex. The following

holds for probability measures m and n :

(i) f ( m | n ) P [ f (1), f (0) 1 f ( ` )/ ` ].

(ii) m 5 n Û f ( m | n ) 5 f (1).
(iii) m ’ n Þ f ( m | n ) 5 f (0) 1 f ( ` )/ ` .

(iv) For f (0) 1 f ( ` )/ ` , ` the reverse implication in (iii) holds as well.

We see that an f-divergence is a good indicator for equality as well as

for disjointness of states. At this point we give some examples which illustrate

the unifying character of the concept of f-divergences. The most important

representative, the relative entropy, is obtained by choosing f (u) 5 2 ln(u)

1 u 2 1. In this case one gets

f ( m | n ) 5 : S ( m , n ) 5 H 2 # x

ln 1 d m
d n 2 d n if m , , n

1 ` otherwise

If we choose the (concave!) function f (u) 5 H a (u) : 5 u a , we get the Hellinger
integral of order a P ]0, 1[:

f ( m | n ) 5 H a ( m | n ) 5 # x 1 d n
d s 2

a

1 d m
d s 2

1 2 a

d s

2 We could as well choose concave functions.
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The distinguished value a 5 1±2 yields the affinity and leads to the generalized
transition probability (Cantoni, 1975) in the quantum world. With the use

of the Hellinger integrals the ReÂnyi entropies of order a are defined by

S a ( m , n ) 5
1

a ( a 2 1)
ln H a ( m | n )

This (continuous) one-parameter family of functionals emerges, as the relative
entropy, from an axiomatic codification of (relative) information (ReÂnyi,

1961) and it holds that lim a ® 0S a ( m , n ) 5 S ( m , n ). This emphasizes the

entropic character of the Hellinger integrals and therefore of the generalized

transition probability (Gudder et al., 1979).

In a general statistical theory the set of states is taken as primitive
concept. It is modeled by a convex set _ which is the base of a base normed
space 9 5 9+ 2 9+ with positive cone 9+ 5 ø l P R 1 l _ (Alfsen and Shultz,

1976). The dual space 9* 5 !Ð relevant for the definition of observablesÐ

equipped with the dual order and norm is an order unit space. The order
unit e coincides on 9+ with the norm. Elements of [0, e] # ! are called

effects and the extremal points u P 8 5 - e[0, e]Ð the generalizations of the
projections of quantum mechanicsÐ are called decision effects. As mentioned

in the introduction, the concept of observables links general quantum theories

to classical statistics and is the basic tool for the so-called minimal statistical
interpretation (Busch et al., 1991) of quantum mechanics. We stick here to

the definition of observables as positive operator valued measures (POVM),

also called unsharp observables:

Definition 2 (Observable). Let (-, S ) be a measurable space. An

((-, S ) 2 ) observable is a map A: S j [0, e] fulfilling:

(i) A (-) 5 e.
(ii) A ( ø n P N En) 5 ( n P N A (En) for each sequence (En)n P N of pairwise

disjoint measurable sets.

Here the (infinite) sum is understood in the w*-sense. An observable is

called sharp (PV) if its range is contained in the set of decision effects.

Associated with the concept of observables is the following interpreta-

tion. An observable A represents a measurement with possible outcomes in

the value space -. If the system is in the state v and an observable A is

measured, then the number ^ v ; A (E ) & is the probability that the outcome of
the measurement lies in the set E # -. The basic idea that observables

connect general statistical theories to classical statistics is made clear by the

following formalization, which is immediate by the definition of an

observable.

Proposition 3. Let A be an (-, S )-observable. Then TA: _ j } 1
1 (-,

S ) defined by (TA v )( ? ) : 5 ^ v ; A ( ? ) & is an affine map from the state space _
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into the space of all probability measures } 1
1 (-, S ) on (-, S ). The other

way round, each such affine map yields an observable. Thus, the map A j

TA is one-to-one.

Using this technique, it is easy to transfer concepts of classical statistics

into the nonclassical world. This is done by first taking into account each

observable separately and then doing some optimization procedure. To make

this explicit for the informational divergences between two states v and w
we choose an observable A and compare the associated measures by defining

fA( v | w ) : 5 f (TA v |TA w ) (3)

We call fA the f-divergence between v and w induced by A. If we have a

distinguished family of observables 2,3 then

f2( v | w ) : 5 sup{ f(TA v |TA w ) | A P 2} (4)

gives the maximal value of discrimination between the states v and w if one

considers measurements of the observables in 2. Therefore it is reasonable

in the case that 2 is the set off all observables to call f2( v | w ) the f-divergence

f ( v | w ) between v and w . If 2 is the set of all sharp observables, the associated

f-divergence is denoted by fPV( v | w ).
Now, for f ( ? | ? ) the range of values (cf. Theorem 1) remains exactly the

same as in the classical regime if one defines v ’ w if there is an effect a
with ^ v ; a & 5 1 and ^ w ; a & 5 0. Relevant for the entropic character of

the f-divergence is the monotony, which in the classical context is usually

formulated in terms of stochastic kernels, which are not immediately at hand

in our context (Schindler, 1991).

Proposition 4. For an affine mapping (coarse graining) between state

spaces T: _ j _8, i.e., T*: !8 j ! is positive and unit preserving, it holds
that f ( v | w ) $ f (T v |T w ).

This property is connected with the concept of sufficiency. Here, we

want to call a family of observables 2 ( f-) sufficient for two states v and w
if f2( v | w ) 5 f ( v | w ) holds. Note, that we have chosen a different concept of

sufficiency than in quantum probability. There (Ohya and Petz, 1993) one

defines sufficiency in terms of completely positive mappings in analogy to

Blackwell sufficiency in classical statistics, which is a more global notion.

In particular, it is independent of the convex function f and implies sufficiency

in our sense for all f. Now we can state approximation theorems as statements
about sufficient sets of observables. For instance, the set of observables with

finite spectrum is sufficient for all states and all convex functions f. In the

3 For concave f we use here the infimum.
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operator-algebraic context, we are often in the situation that the relevant state

space _ is the state space of a quasilocal C*-algebra AÅ
| ? |
0 , A0 : 5 ø L P + A L

. Here the observables with range in A0 (with finite spectrum), i.e., the strictly
local ones, are sufficient for all states (see also Kosaki, 1983).

What is known about the set of the PV-observables, the observables in

the traditional sense? In the classical scenario [_ 5 }(-, S ) 1
1 ] the sharp

observables are indeed sufficient, which also ensures the consistency of our

generalization. In the general case the question remains open, but we can

state the following partial result.

Proposition 5. The following statements are equivalent:

(i) The sharp observables are sufficient.

(ii) For any coarse graining T: _ j _8 it holds that fPV( v | w ) $
fPV(T v |T w ).

(iii) fPV( v | w ) $ fPV(T v |T w ) for any discrete, classical coarse graining T:
_ j (l 1) 1

1 .

That is, whenever fPV is a ª goodº statistical functional, that is, it has

the right categorial properties, the set of sharp observables is f-sufficient. We

should remark at this point that the mentioned Hellinger integrals, therefore
the generalized transition probability, fulfillÐ at least if _ is spectral (Alfsen

and Shultz, 1976)Ð the equivalent conditions of the above proposition. We

now discuss further properties of the f-divergences, which rely on some

deeper structural insights, and therefore impose on our state space _ to be

projective in the sense of Alfsen and Shultz (1976). That is, we have a

rich (orthomodular) set of decision effects and to each decision effect there
corresponds a filtering transformation, a so-called P-projection.

Proposition 6 (Convexity):

f ( l v 1 1 (1 2 l ) v 2| l w 1 1 (1 2 l ) w 2) # l f ( v 1| w 1) 1 (1 2 l )f ( v 2| w 2)

for v 1, v 2, w 1, w 2 P _ and l P [0, 1]. We have equality if v 1, w 1 ’ v 2, w 2.

If we have commuting states x , w , i.e., there are some common orthogonal

decompositions x 5 ( l i v i , w 5 ( k i v i , ( l i 5 1 5 ( k i , with v 1 pairwise

orthogonal, we conclude from the above proposition

f ( x | w ) 5 o fÄ ( l i, k i) 5 o
k i Þ 0

f 1 l i

k i 2 k i 1 o
{i | k i 5 0}

l i
f ( ` )

`

In this case the f-divergences are determined by the statistical weights of the

orthogonal decomposition, i.e., they have a classical interpretation. A similar

situation occurs if we have superselection sectors, i.e., if we have an orthogo-

nal set of split faces Ci with % i P N Ci 5 _. If we consider the positive
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functionals v i , w i , the unique components of the states v , w in Ci , we get

f ( v | w ) 5 ( i P N f ( v i| w i). This expression inherits from the decomposition into

sectors only the classical f-divergence of the statistical weights, which are
hidden in the nonnormalized states v i , w i (| v i| 5 ^ v ; Ci & ). This shows the

absence of quantum correlations between different superselection sectors. At

this point one can speculate about more complex decompositions, for instance,

by means of a split face valued measure m Ã. Formally one expects a decomposi-

tion ª f ( v | w ) 5 * X f ( v (x)| w (x)) m (dx)º . We must remark at this point that

one gets into measure-theoretic trouble if one proceeds along this line of
thought. But at least in the case of direct integrals of von Neumann algebras,

where a measure-theoretic apparatus is at hand, the above formula can be

made rigorous (Gerisch et al., 1996).

Finally we switch to operator-algebraic quantum mechanics, i.e., _ is

represented by } 1
*,1, the normal states of a W*-algebra }. Here the notions

of so-called quantum probability are applied. We get another generalization
of f-divergences, which we sketch briefly. Fundamental is the standard repre-
sentation ^ }, *, 3, J & (StraÏ tilaaÏ 1981), which gives a one-to-one mapping

9+ % 3 between the positive functionals and the self-dual cone 3. The role

of the Radon±Nikodym derivative of classical statisticsÐ our f-divergence is

some function of this objectÐ is played by the relative modular operator D V F .
Now, the quasi-entropy f D Ð another generalization of f-divergence into the

nonclassical contextÐ is defined in Ohya and Petz (1993) and Araki (1976)

for the relative entropy by

f D ( v | w ) : 5 f D V ,F ( v V | v F ) 5 ^ F | f ( D V , F ) F & 1 ^ V | (1 2 s }( F )) V &
f ( ` )

`
(5)

This statistical distance has similar properties to f-divergences if f is operator-
convex. In connection with our definition of informational divergences the

following holds:

f ( v | w ) # f D ( v | w )

This results from a different definition of observables in quantum probability.

There one regards a subalgebra of } as an observable. Our sharp observables

are the commutative subalgebras. Thus, in quantum probability an optimiza-

tion as in equation (3) is over a greater set of ª observables.º But, if v and

w commute, we have

f ( v | w ) 5 fPV( v | w ) 5 f D ( v | w ) (6)

Here equation (6) indicates for special functions fÐ e.g., f (u) 5 u a Ð that v
and w commute.
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